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Abstract—in this work, we introduce the unsteady   

incompressible Navier-Stokes equations with a new boundary 

condition, generalizes the Dirichlet and the Neumann conditions. 

Then we derive an adequate variational formulation of time-

dependent Navier- Stokes equations. We then prove the existence 

theorem and a uniqueness result. A Mixed finite-element 

discretization is used to generate the nonlinear system 

corresponding to the Navier-Stokes equations. The solution of the 

linearized system is carried out using the GMRES method. In 

order to evaluate the performance of the method, the numerical 

results are compared with others coming from commercial code 

like Adina system. 

Keywords—Unsteady Navier-Stokes Equations; Mixed Finite 

Element Method;        boundary condition; Adina system. 

I. INTRODUCTION 

The two firsts PDEs given in section 2 constitute the basis 
for computational modeling of the flow of an in compressible 
Newtonian fluid. For the equations, we offer a choice of two-
dimensional domains on which the problem can be posed, 
along with boundary conditions and other aspects of the 
problem, and a choice of finite element discretizations on a 
quadrilateral element mesh, whereas the discrete Navier-
Stokes equations require a method such as the generalized 
minimum residual method (GMRES), which is designed for 
non symmetric systems [9, 19]. The key for fast solution lies 
in the choice of effective preconditioning strategies. The 
package offers a range of options, including algebraic methods 
such as incomplete LU factorizations, as well as more 
sophisticated and state- of-the-art multigrid methods designed 
to take advantage of the structure of the discrete linearized 
Navier-Stokes equations. In addition, there is a choice of 
iterative strategies, Picard iteration or Newton method, for 
solving the nonlinear algebraic systems arising from the latter 
problem. 

This paper presents the unsteady Navier-Stocks equations 
with a new boundary condition noted by      . This condition 

generalizes the known conditions, especially the conditions of 
Dirichlet, Neumann...  

If         are the real numbers strictly positive such that  

    , then      is the Neumann boundary condition and 

if      then      is the Dirichlet boundary condition. For 

that   is called the Dirichlet coefficient and   is the Neumann 
coefficient. So, we prove that the weak formulation of the 
proposed modeling has a unique solution. To calculate this 
latter, we use the discretization by mixed finite element 
method. Moreover, to compare our solution with the some 
previously ones, as ADINA system, some numerical results 
are shown. 

The paper is organized as follows. Section II presents the 
model problem. In the section III we show the existence and 
uniqueness of the solution of the standard weak formulation 
and of semi-descretization.  

In section IV we describe the approximation of the 
standard weak formulation using mixed finite elements and 
Picards nonlinear iteration and using GMRES algorithm to 
solve it. Numerical experiments carried out within the 
framework of this publication and their comparisons with 
other results are shown in section V. 

II. UNSTEADY INCOMPRESSIBLE NAVIER-STOKES 

EQUATIONS 

We consider the unsteady Navier-Stokes equations for the 
flow with constant viscosity  
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Where 0 a given constant is called the kinematic 

viscosity. u


 is the fluid velocity, p is the pressure field,   is 

the gradient and .  is the divergence operator. 

The boundary value problem that is considered is posed on 
two or three-dimensional domain Ω, is defined as: 
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Where n


 that is the usual outward-pointing normal 

boundary. 
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 ba  and   are the function nonzero 

continuous defined on    verify: 

There are two strictly positive constants , and 11  such 

that:  
    

(3)             allfor   
)(

)(
                       11  x
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xa
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This system is the basis for computational modeling of the 
flow of an incompressible fluid such as air or water. The 
presence of the nonlinear convection term uu


 means that 

boundary value problems associated with the Navier-Stokes 
equations can have more than one solution. 
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      is new boundary condition, for that we need to show 

the existence and uniqueness theorems for this modeling. 

III. EXISTENCE AND UNIQUNESS OF THE SOLUTION 

A. Weak formulation  
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Now, by hypothesis 
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THEOREM 6. Problem (21) and (22) are equivalent. 
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             (24) 

By the Lemma 8 and the Lax-Milgram’s Theorem, (24) has a 

unique solution u


 in .


V  Then, 

).(,,,
1
 NHvvlvdivudiv

  

We set )(
2

0  Ludiv


 and we find (23). 

It remains to prove that  is unique in ).(
2

0 L But clearly, if  

)(
2

0 L and 0, vdiv


 ),(
1
 NHv


then 0  

since div maps ),(
1
NH onto ).(

2

0 L  

PROOF OF THEOREM 6. Clearly, if ),( pu


is a solution 

of (22), thenu


 satisfies (21). 

Conversely, let );,0();,0(
2

HTLVTLu


 


 

A solution of (21) and consider the mapping defined on 

),(
1
NH by: 

  ),()),(()),();((),(

),(

0
0

vuvtudsvtutucvsf

tvL

t 



 
 

For each t, L is a linear functional on ),(
1
NH  that 

vanishes on V. Hence, according to Lemma 9, for each t there 

exists exactly one function ),()(
2

0 LtP such that 
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vtPgradtvL


),(),(  ).(
1
 NHv


 

In other words,  

  ),()),(()),();((),(

)),((

0
0

vuvtudsvsusucvsf

vtP

t 



 
 

).(
1
 NHv


                                                       (25) 

By using Lemma 4, it can be checked that 

 )(];,0[
2

0

0
 LTCP  

Next, by differentiating (25), we get: 

 

  ),(),
)(

()),();((),(

),
)(

(

0 vuv
dt

tud
vsusucvsf

v
dt

tdP










 

).(
1
 NHv


                                                   (26) 

Thus, if we set 
dt

dP
p  in [),,0](' TD  we find the 

second equation of (22). 
 

THEOREM 10. Problem (21) has a unique solution in 

);,0();,0(
2

HTLVTLu


 
  

 

PROOF. The same steps of proof of Theorem 1.5 chapter VI 

in [2] but the spaces V, H, )...(
1
NH  are note the same. . 

B. Semi-discritisation  

In this paragraph, we propose to analyze a very simple one-

step method in order to illustrate the type of argument that is 

often used when dealing with semi-discretization. Consider 

again the problem (20). 

 

find );,0();,0(
2

HTLVTLu


 


 Such that  

 



















 .in     )0(

[),,0(]'in    ,     

),()),();((),(

0uu

TDVv

vlvtutucvtu
dt

d







                 (27) 

 

Let 
N

T
k   and nt the subdivisions of [0, T]:  ;nktn   

.0 Nn   

Now, suppose that an approximation, , Vu
n



of )( ntu


 is 

available and consider the following problem: 

   



















 









 .,)()(        

),;(,
1

 

11

11

1

Vvvttvtf

vuucvuu
k

thatsuchVufind

nn

nnnn

n







       (28)      

 

, 
n

u


)( and )( 11  nn tttf


are given respectively in V and 

V’, it follows that (28) can be expressed in the from: 

 


















 





 









 . ),(,)()(

),;(,

 

11

11

1

Vvvuvttvtfk

vuukcvu

thatsuchVufind

nnn

nnn

n







(29) 

 

Thus, we are asked to solve a linear boundary value 
problem associated with the bilinear form: 

    ).,;(,, vuukcvuvu
n 

  

This form is continuous in V ×V and V-elliptic since 

  2

,

2

,0
),;(,




J

n
vkvvvukcvv


 

Therefore, by Lax-Mailgram’s theorem [2], problem (29) 

has a unique solution 
1n

u


 in V. 

IV.  DISCRETIZATION BY MIXED FINITE 

ELEMENTS 
Our goal here is to consider the unsteady Navier-Stokes 

equations with baC ,  boundary conditions in a two dimensional 

domain and to approximate them by a mixed finite element 
method. 

Mixed finite element discretization of the weak 
formulation of the Navier- Stokes equations gives rise to a 
nonlinear system of algebraic equations. Two classical 
iterative procedures for solving this system are Newton 
iteration and Picard iteration 

Let ,0 ; hTh
 be a family of rectangulations of  . For 

any .hTT   

We denote by 
Th  the diameter of a simplex, by 

Eh  the 

diameter of a face E of  T, and we set  TTT hh
h max .

 

A discrete weak formulation is defined using finite  

dimensional spaces )(X 
11

h  NH   and  )(M 
2

0

h
 L  

The discrete version of (10)-(11) is: 

 :such that  and   
1 h

hhh MpXufind 


 

 

  hhhh

hhhhhhhh
h

vt
b

a
vfpvb

vuuavu
b

a
vuv

t

u








 



 









,             

,,.: 1
    (30) 

  0,  hh qub


                                                                 (31) 

. and   
1 h

hhh MqXvallfor 


 

We define the appropriate bases for the finite element 
spaces, leading to a non linear system of algebraic equations. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 4, No.3, 2013 

47 | P a g e  

www.ijacsa.thesai.org 

To define the corresponding linear algebra problem, we use a 

set of vector-valued basis functions  
unii ,...,1




So that 

   



un

j

jjh yxtuyxtu
1

 ),()(),,( 
                       (32) 

We introduce a set of pressure basis functions   
pnkk ,...,1

  

and set  





pn

k

kkh yxtpyxtp
1

),()(),,(                        (33)                                 

Where un and pn are the numbers of velocity and pressure 

basis functions, respectively. 

  )()()(]))(()( tLtBPtUMtUNt
dt

dU
D    (34) 

0)( tUB
T                                   (35) 

With  

 T

n tutututU
u

)(),...,(),()( 21  

 T

n tptptptP
p

)(),...,(),()( 21  

 ,.);( ,, jijiji ddD 
  

  





un

k

ikjkjiji tucctUN
1

,, ,.)( ),())(( 
  

,: ),( ,, ijijjiji
b

a
mmM 


 

  

,: ),( ,, ijijjiji
b

a
mmM 


 

  

    . ; ][ ,,   jkjkjk bbB 


 

   )().()(  ; )()( iiii tt
b

a
tftltltL 


  

    

for  ,,...,1, unji  and .,...,1 pnk    

Using the backward Euler method for the time derivative 
and substituting into (34)-(35), one obtains the following 
system of nonlinear equations in tensor notation: 

 

  ,)0(),...,0(),0()0( 21

T

nu
uuuU              (36) 

  ),(])( 1

111
1









n

nnn
nn

tLBPUMUN
k

UU
D (37) 

.0
1


nT
UB                                         (38) 

 

With )0(),...,0(),0( 21 unuuu are the coordinates in the 

basis  
unii ,...,1




of the approximation of 0u


 in .hX  Solution 

of the nonlinear system of equations, Eq. (34)-(35), can be 
carried out efficiently using Picards method, where we start 

with an initial guess pu nnnn
IRPU


),(

0,0,   and construct a 

sequence of iterates 
pu nnmnmn

IRPU


),(
,,

 it converges to 

the solution of (34)-(35). In this approach we approximate the 
nonlinear convection term as follows: 

 

    1,1,111
])(])(




mnmnnn
UMUNUMUN  

 
For the finite-element basis functions, we chose to work 

with stable rectangular elements (Q2-Q1), where we use 
biquadratic approximation for the velocity components, 
bilinear approximation for the pressure, and stable triangular 
elements (P2-P1), where we use quadratic approximation for 
the velocity components and linear approximation for the 
pressure. 

The linear system we need to solve within each iteration of 
Picards method has the following generic form: 

  .
00

 
 

0

00






























  f

P

U

B

BNA
T

                   (39) 

We use the generalized minimum residual method 
(GMRES) for solving the nonsymmetric systems. 
Preconditioning is a technique used to enhance the 
convergence of an iterative method to solve a large linear 
system iteratively. Instead of solving a system 

Λx = b, one solves a system ,
11
bPxP


  where P is 

the preconditioned. A good preconditioned should lead to fast 
convergence of the Krylov method. Furthermore, systems of 
the form Pz = r should be easy to solve. For the Navier-Stokes 
equations, the objective is to design a preconditioned that 
increases the convergence of an iterative method independent 
of the Reynolds number and number of grid points. We use a 
least-squares commutator preconditioning [10, 11,12]. 

V. NUMERICAL SIMULATIONS 

In this section, some numerical results of calculations with 
mixed finite element method and ADINA system will be 
presented. Using our solver, we run two traditional test 
problems (driven cavity flow [9, 14, 15, 16, 17], Backward-
facing step problem [10, 13]) and the flow over an obstacle [9] 
with a number of different model parameters. 

EXAMPLE 1. Driven cavity flow. It is a model of the flow 
in a square cavity with the lid moving from left to right. Let 

the computational model:  ,1/11;1
4

xuxy x   

a regularized cavity. The streamlines are computed from the 
velocity solution by solving the Poisson equation numerically 
subject to a zero Dirichlet boundary condition. 

 

 
Fig.1. Vorticity (left plot), and velocity magnitude solution (right plot) using 

P2 − P1 approximation a 64 × 64 square grid and Reynolds number Re =100. 
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Fig.3. Vorticity (left plot), and velocity magnitude solution (right plot) using 

P2 − P1 approximation a 64 × 64 square grid and Reynolds number Re =400. 

 

 
 

Fig.2. Vorticity (left plot), and velocity magnitude solution (right plot) using 

P2 − P1 approximation, a 64 × 64 square grid and Reynolds number 
Re=1000. 

 
Fig.4. The velocity component u at vertical center line (left plot), and the 

velocity component v horizontal center line (right plot) with a 129 × 129 grid 

and Re=100. 

 

 
Fig.5. The velocity component u at vertical centerline (left plot), and the 

velocity component v at horizontal center line (right plot) with a 129 × 129 

grid and Re=1000. 

Figures 4 and 5 shows the velocity profiles for lines 
passing through the geometric center of the cavity. These 
features clearly demonstrate the high accuracy achieved by the 
proposed mixed finite element method for solving the 
unsteady Navier-Stokes equations in the lid-driven squared 
cavity. 

EXAMPLE 2. L-shaped domain Ω, parabolic inflow 
boundary condition, natural outflow boundary condition. 

This example represents flow in a rectangular duct with a 
sudden expansion; a Poiseuille flow profile is imposed on the 
inflow boundary  ,10 ;1  yx  and a no-flow (zero 

velocity) condition is imposed on the walls. 

The Neumann condition is applied at the outflow boundary 
(x=5; −1 < y < 1) and automatically sets the mean outflow 
pressure to zero. 

 

Fig.6. Equally spaced streamline plot associated with a 32 × 96 square 

grid, 
01 PQ   approximation and  

100
1 ( t=100 seconds). 
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Fig.7. The solution computed with ADINA system. The plot show the 

streamlines associated with a 32 × 96 square grid and 
100

1 (t=100 

seconds). 

The two solutions are therefore essentially identical. This 
is very good indication that my solver is implemented 
correctly. 

VI. CONCLUSION 

In this work, we were interested in the numerical solution 
of the partial differential equations by simulating the flow of 
an incompressible fluid. We introduced the unsteady Navier-

Stokes equations with a new boundary condition noted Ca,b. 

We have shown the existence and uniqueness of the solution 
of the weak formulation and the solution of the semi-
discretization. We used the discretization by mixed finite 
element method. 

Numerical experiments were carried out and compared 
with satisfaction with other numerical results, either resulting 
from the literature, or resulting from calculation with 
commercial software like Adina system. 

ACKNOWLEDGMENTS 

The authors would like to express their sincere thanks for 
the referee for his/her helpful suggestions. 

REFERENCES 

[1] Alexandre Ern, Aide-m´emoire El´ements Finis, Dunod, Paris, 2005. 
[2] P.A. Raviart, J. Thomas, Introduction l’analyse numerique des équations 

aux d´erivées partielles, Masson, Paris, 1983. 
[3] R.E. Bank, B. Welfert, A posteriori error estimates for the Stokes 

problem, SIAM J. Numer. Anal 28, pp. 591-623, 1991. 
[4] C. Carstensen, S.A. Funken. A posteriori error control in low-order finite 

element discretizations of incompressible stationary flow problems. 
Math. Comp., 70, pp. 1353-1381, 2001. 

[5] R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive 
Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1996. 

[6] D.H. Wu, I.G. Currie. Analysis of a posteriori error indicator in viscous 
flows. Int.J.Num. Meth.Heat Fluid Flow., 12, pp. 306-327, 2001. 

[7] E. Creuse, G. Kunert, S. Nicaise, A posteriori error estimation for the 
Stokes problem: Anisotropic and isotropic discretizations, M3AS 14, pp. 
1297-1341, 2001. 

[8] P. Clement, Approximation by finite element functions using local 
regularization, RAIRO. Anal. Numer. 2,  pp. 77-84, 1975. 

[9] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative 
Solvers: with Applications in Incompressible Fluid Dynamics, Oxford 
University Press, Oxford, 2005. 

[10] M. ur Rehman, C. Vuik and G. Segal, A comparison of preconditioners 
for incompressible Navier-Stokes solvers, Int. J. Numer. Meth. Fluids, 
57, pp.1731-1751,2007. 

[11] H. Elman, V.E. Howle, J. Shadid, D. Silvester, and R. Tuminaro, Least 
squares preconditioners for stabilized discretizations of the Navier-
Stokes equations. SIAM J. Sci. Comput., 30, 290-311, 2007. 

[12] A. Gauthier, F. Saleri, and A. Veneziani, A fast preconditioner for the 
incompressible Navier-Stokes equations, Comput. Visual. Sci, 6, pp.  
105 -112, 2004. 

[13] P. Gresho, D. Gartling, J. Torczynski, K. Cliffe, K. Winters, T. Garratt, 
A. Spence, and J.Goodrich, Is the steady viscous incompressible 2d flow 
over a backward facing step at Re =800 stable?, Int. J. Numer. Methods 
Fluids, 17, pp. 501-541, 1993. 

[14] S. Turek, A comparative study of some time-stepping techniques for the 
incompressible Navier-Stokes equations: From fully implicit nonlinear 
schemes to semi-implicit projection methods, Int. J. Numer. Meth. 
Fluids, 22, pp.987-1011, 1996. 

[15] E. Erturk, T.C. Corke and C. Gokcol, Numerical solutions of 2-D steady 
incompressible driven cavity flow at high Reynolds numbers, Int. J. 
Numer. Meth. Fluids, 48, pp.747-774, 2005. 

[16] S. Garcia, The Lid-Driven Square Cavity Flow: from Stationary to Time 
Periodic and Chaotic, Commun. Comput. Phys, 2, pp.900-932, 2007. 

[17] E. Barragy and G.F. Carey, Stream function vorticity driven cavity 
solution using p finite elements, Comput. Fluids, 26, pp.453-468, 1997. 

[18] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Method, 
Springer Verlag; New York, 1991. 

[19] A. Nejat, and C. Ollivier-Gooch, Effect of discretization order on 
preconditioning and convergence of a high-order unstructured Newton 
GMRES solver for the Euler equations, J. Comput. Phys. 227, pp.2366 
2386.2008. 

[20] R.Temam Navier-Stokes Equations. North Holland, Amsterdam,1977. 
[21] K.Yosida, Functional Analysis. Spriger-Verlag, Berlin,1965. 
[22] Elman, H. and Ramage, A. and Silvester, D.J.  Algorithm 866: IFISS: a 

Matlab toolbox for modelling incompressible flow. ACM Transactions 
on Mathematical Software, 33, pp.1-18, 2007. 

[23] S.Alami1, A.Elakkad, and A. Elkhalfi, A posteriori error estimation for 
incompressible flow problem, IJMER, 2, pp. 533-538, 2012.     

[24] Mohamed S. Ebeida, Roger L. Davis† and Roland W. Freund, Unsteady 
Incompressible Flow Simulation Using Galerkin Finite Elements with 
Spatial/Temporal Adaptation, American Institute of Aeronautics and 
Astronautics, pp.1-11, 2007.  

 

 

 

 

 
 
 


